Copyright (C) 2017 Idea International Corporation. All Rights Reserved.


44) K.Ohno, A.Manjananath, Y.Kawazoe, R.Hatakeyamas, F.Misaizu, E.Kwon, H.Fukumura, H.Ogasawara, Y.Yamada, C. Zhang, N.Sumi, T.Kamigaki, K.Kawachi, K.Yokoo, S.Ono, and Y.Kasama, Extensive First-Principles Molecular Dynamics Study on the Li Encapsulation into C60 and its Experimental Confirmation, Nanoscale, 2018 Advance Article ,

DOI: 10.1039/C7NR07237F


43) H.Okada, H.Kawakami, S.Aoyagi and Y.Matsuo, Crystallpgraphic Structure Determination of Both [5,6]- and [6,6]-Isomers of Lithium-Ion-Containing Diphenylmethano[60]fullerene, J.Org.Chem., 2017, 82, 5868-5872


42) C.M.Tran, H.Sakai Y.Kawashima, K.Ohkubo, S.Fukuzumi and H.Murata, Multi-level non-volatile organic transistor-based memory using lithium-ion-encapsulated fullerene as charge trapping layer, Organic Electronics 45 (2017) 234-239


41) H.Yagi, N.Ogasawara, M Zenki, T.Miyazaki and S.Hino, Photoemission study of Li@C60, Chemical Physics Letters 651(2016) 124-126


40) H.Suzuki, et al., Rotational Dynamics of Li+ Ions Encapsulated in C60 cages at Low Temperatures, Chem.Phys.Phys.Chem.,2016, 18, 31384-31387


39) S.Aoyagi et al., Tunneling Motion and Ant ferroelectric Ordering of Lithium Cations Trapped inside Carbon Cages, jpsj.85.094605(2016)


38) H.Ueno, T.Nishihara, Y.Segawa and K.Itam, Cycloparaphenylene-Based Ionic Donor-Acceptor Supramolecule: Isolation and Characterization of Li+@C60([10]CPP**, Angew. Chem. Int. Ed. 2015, 54, 37-7-3711


37) K.Ohkubo et al., Multiple photosynthetic reaction centres of porphyrinic polupeptide-Li+@C60 supramolecular complexes, Chem. Commun., 2015, 51, 17517


36) R.Senga, Single-atom electron energy loss spectroscopy of light elements, Nature Communications 6, Article number:8943


35) H.Ueno,Electrochemical reduction of cationic Li+@C60 to neutral Li+@C60*- : isolation and characterisation of endohedral [60]fulleride, Chem.Sci.,2016,7,5770-5774


34) H. Isobe et. al, Modulation of energy conversion processes in carbonaceous molecular bearings. Chem. Asian J. 10.1002/asia., 201500673


33) Mustafa Supur et. al, Graphene oxide–Li+@C60 donor–acceptor composites for photo energy conversion. Phys.Chem.Chem.Phys., 2015, 17, 15732


32)C.M.Davis, K.Ohokubo, A.D.Lammer, D.S.Kim, Y.Kawashima, J.L.Sessler, and S.Fukuzumi, Photoinduced electron transfer in a supramolecular triad produced by porphyrin anion-induced electron transfer from tetrathiuafulvalence calyx[4]pyrrole to Li+@C60, Chem.Commn.,2015,51.9789-9792


31)T.Kamimura, K.Ohkubo, Y.Kawashima, S.Ozako, K.Sakaguchi, S.Fukuzumi, and F.Tani, Long-Lived Photoinduced Charge Separation in inclusion Complexes Composed of a Phenothhizine-Bridged Cyclic Porphyrin Dimer and Fullerenes, J. Phys. Chem. C  2015, 119, 25634-25650


30)Y.Kawashima et. al,, Near-Infrared Photoelectrochemical Conversion via Photoinduced Charge Separation in Supramolecular Complexes of Anionic, Phthalocyanines with Li+@C60. J. Phys. Chem.B 2015, 119, 7690−7697


29) K. Ohkubo et. al, Singlet oxygen generation from Li+@C60 nanoaggregates dispersed by laser irradiation in aqueous

solution† ChemComm 2015, 51, 8082-8085


28) Kawashima et al., Efficient Charge Separation in Li+@C60 Spuramolecular Complexes with Electron Donors, Chem. Asian J., 2015,10, 44-54


27) M.Supur, Y.Kawashima, Y-X.Ma, K.Ohkubo, CF Chen and S.Fukuzumi, Long-lived charge separation in a rigid pentiptycene bis(crown ether)-Li+@C60 host-guest complex, Chem. Commun., 2014, 50, 15796-15798


26) K.Ohkubo et al., Photoelectrochemical Properties of Supramolecular Composites of Anionic Zinc Chlorin and Li+@C60 on SnO2, J. Porphyrins Phtalocyanines 2014, 18, 982-990


25) Mustafa Supur. et al., Robust Inclusion Complexes of Crown-ether-fused Tetrathiafulvalenes with Li+@C60 Affording Efficient Photodriven Charge Separation , Chem. Eur. J. 2014, 20, 13976-13983


24) Kawashima Y. et al., Supermolecular Formation of Li+@PCBM Fullerene with Sulfonated Porphyrins and Long-Lived Charge-Separation, ChemPhysChem 2014, 15, 3782-3790


23) Eunsang Kwon, Dynamic Behavior of Lithium-Cation in a C60 Fullerene Cage Elucidated by Terahertz Spectroscopy, Mol. Cryst. Liq. Cryst., Vol.598: pp28-31, 2014


22) Yamada M. et al., PhotoinducedElectron Transfer in Charge-Transfer Complex Formed between Corannulenes and Li+@C60 by Concave-Convex p-p Interactions, J. Am. Chem. Soc. 2014, 136, 13240-13248


21) H. Ueno et al., Kinetic Study of the Diels-Alder Reaction of Li+@C60 with Cyclohexadiene Greatly Increased Reaction Rate by Encapsulated Li+, J. Am. Chem. Soc., DOI:10.1021/ja505952y, (web):09 July 2014


20) H. Okada et al., Anion Exchange of Li+@C60 Salt for Improved Solubility, Fullerenes, Nanotubes and Carbon Nanostructures, Jan.2014, 22:1-3, 262-268, (2014)


19) H. Kawakami et al., Efficient Diels–Alder Addition of Cyclopentadiene to Lithium Ion Encapsulated [60]Fullerene, Org. Lett., 2013, 15 (17), pp 4466–4469


18) Yoshifumi Noguchi *†, Osamu Sugino †, Hiroshi Okada ‡, and Yutaka Matsuo ‡First-Principles Investigation on Structural and Optical Properties of M+@C60 (Where M = H, Li, Na, and K) J. Phys. Chem. C, 2013, 117 (29), pp 15362–15368


17) T. Watanabe et al, Iridium and Platinum Complexes of Li+@C60, Organomtallics, 2014, 33, 608-611


16) S. Fukuzumi et al, Long-lived photoinduced charge separation for solar cell applications in supremolecular complexes of multi-metalloporphyrins and fullerenes, Dalton Trans., 2013, 42, 15846-15858


15) Y. Kawashima et al, Electron Transfer in Supramolecular Complex of Zinc Chlorin Carboxylate Anion with Li+@C60 Affording the Long-Lived Charge-Separated State, J. Phys. Chem. C, 2013, 117, 6737-6743


14) Y. Kawashima et al, Small Reorganization Energies of Photoinduced Electron Transfer between Spherical Fullerenes, J. Phys. Chem., A 2013, 117, 6737-6743


13) H. Ueno et al, Ionic conductivity of [Li+@C60](PF6–) in organic solvents and its electrochemical reduction to Li+@C60•–, Chem. Commun., 2013, 49, 7376-7378 


12) Nathan L. Bill et al, Porphyrins Fused with Strongly Electron-Donating 1,3-Dithiol-2- ylidene Moieties: Redox Control by Metal Cation Complexation and Anion Binding, J. Am. Chem. Soc., 2013.135,10852-10862


11) K.Ohkubo et al, Enhanced photoelectrochemical performance of composite photovoltaic cells of Li⁺@C₆₀- sulphonated porphyrin supramolecular nanoclusters ,Chem. Commun., 2013, 49, 4474-4476


10) H. Ueno et al, Synthesis of a new class of fullerene derivative Li⁺@C₆₀O⁻(OH)₇ as a "cation-encapsulated anion nanoparticle, Nanoscale, 2013, 5, pp2317–pp2321


9) T. Kamimura et al, Submillisecond-lived photoinduced charge separation in inclusion complexes composed of Li⁺@C₆₀ and cyclic porphyrin dimers, Chemical Science, 2013, 4, p1451–p1461


8) H.Okada et al, Preparation of endohedral fullerene containing lithium (Li@C₆₀) and isolation as pure hexafluorophosphate salt ([Li⁺@C₆₀][PF₆⁻]), RSC Advances, 2012.(2),pp10624-10631


7) Y. Kawashima et al, Enhanced Photoinduced Electron-Transfer Reduction of Li⁺@C₆₀ in Comparison with C₆₀ , J Phys Chem A, 2012, 116(36),pp8942-8948


6) Y. Matsuo et al, Covalently Chemical Modification of Lithium Ion-Encapsulated Fullerene: Synthesis and Characterization of [Li⁺@PCBM]PF₆⁻, Org. Lett., 2012, 14 (14), pp 3784–3787


5) H. Ueno et al, Synthesis of a lithium-encapsulated fullerene and the effect of the internal lithium cation on its aggregation behavior, NANO RESEARCH, 2012, 5(8), pp558-564


4) K. Ohkubo et al,Strong supramolecular binding of Li⁺@C₆₀ with sulfonated meso-tetraphenylporphyrins and long-lived photoinduced charge separation, Chem. Commun., 2012 May 7;48(36):4314-6,


3) S. Aoyagi et al, Rock-Salt-Type Crystal of Thermally Contracted C₆₀ with Encapsulated Lithium Cation, Angewandte Chemie International Edition.,2012, 51(14), 3377-3381


2) S. Fukuzumi et al, Ion-Controlled On-Off Switch of Electron Transfer from Tetrathiafulvalene Calix[4]pyrroles to Li⁺@C₆₀, J. Am. Chem. Soc., 2011, 133(40),15938-15941


1) S. Aoyagi et al,A layered ionic crystal of polar Li⁺@C₆₀ superatoms, nature chemistry, 2010 Aug, 2(8):678-683



J5) 大久保 敬, リチウムイオン内包フラーレンLi+@C60の基礎と応用その3-電子移動化学-, Organic Square, 48(2014), 02, Wako


J4) 飛田博実, リチウムイオン内包フラーレンLi+@C60の基礎と応用その2, Organic Square, 48(2014), 02, Wako


J3) 青柳 忍, 松尾 豊, リチウムイオン内包フラーレンLi+@C60の基礎と応用その1, Organic Square, 47(2014), 08, Wako


J2) 青柳 忍, Li内包C60の岩塩型結晶の構造と相転移, 日本結晶学会誌 第55巻 第3号 (2013) 218-222


J1) S.Aoyagi et al, 単結晶電子密度解析により解明されたリチウム内包C60フラーレンの分子構造, 放射光, March 2011, Vol.24, No.2, pp73-80


【専 門 書】

B1) Yutaka Matsuo, Hiroshi Okada, Hiroshi Ueno, “Endohedoral Lithium-Containing Fullerrens Preparation, Derivatization, and Application”, Springer, Nature Singapore Pte Ltd, 2017


BJ1) 松尾 豊 監修 『フラーレン誘導体・内包技術の最前線』 CMC出版, 2014年4月30日


BJ2) 篠原久典・斉藤弥八 著 『フラーレンとナノチューブの科学』 名古屋大学出版会, 2011年7月15日


BJ3) 赤坂 健,山田道夫,前田 優, 永瀬 茂, 『フラーレンの科学』, 共立出版, 2016年11月25日




FL7) Z. Liu, Clustering of molecular hydrogen anion(H3-) on Li+@C60 surface,  International J. of Hydrogen Energy 32 (2007) 3987-3989


FL6) R. Zhang et al., Synthesis of a distinct water dimmer inside fullerene C70, Nature Chem., vol.8, May 2016, 435-441


FL5) W. Sun, Y.Bu and Y.Wang, Interaction and Protection Mecanism Between Li@C60 and Nucleic Asid Bases (NABs): Performance of PM6-DH2 on Noncovelent Interaction of NABs-Li@C60, J. Computational Chem.,2012, 33, 490-501


FL4) .H. Reis, O. Loboda, A. Avramopoulous, M. G. Papadopulos, B. Kirtman, J. M. Luis, R. Zalesny, Electronic and Vibrational Linesr and Nonlinear Polarizabilities og Li@C60 and [Li@C60]+, J. Computational Chemistry, Vol. 32, No.5, 908-914, 2011


FL3) Min Feng, Jin Zhao, Hrvoje Petek, Atomlike, Hollow-Core-Bound Molecular Orbitals of C60, SCIENCE Vol.320, 18 APRIL 2008


FL2) E. E. B. Campbell R.Tellgmann, N.Krawez and I.V.Hertel, PRODUCTION AND LDMS CARACTERISATION OF HNDOHEDRAL ALKALI-FULLERENE FILMS, J.Phys. Chem. Solids., Vol 58, No.11, 1763-1769, 1997


FL1) R. Tellgmann, N. Krawez, S. H. Lin, I. V. Hertel & E. E. B. Campbell, Endohedral fullerene production, NATURE, Vol382,!August 1996



OJ2) 前田 優 et al. ,金属内包フラーレン研究の進展, 現代化学, 527, February 2015, 48-53

OJ1) 赤阪 健, 金属内包フラーレンの分子変換, 分子研レターズ, August 2008, 69-71


Idea International